Hambure, 1080

g qucne

Commission III - Presented Paper

iiuserpe Birardi
Pacolti di Inserneria - Universiti di Mona
INDEPTRDENT NODELS ITH PRODEOION CEHTERK
CONMESTED ONLY IN FHIGHT

Abstract:
A simple procedure is proposed for independent models aerig? triangulation, in which the connexion of the projection centers is imposed only on the Z coordinate. After some iterations the results appear well comparable with those obtained by conventio nal procedures; comparison is reported with some ones of them in a small block of strips.

$$
\text { Rome, April } 1080
$$

```
Independent ."ndels \becauseith lrojection Jenters
    comnected only in heisht
```

1. - It is well rnown that the mein source of unaccu-
racy in independent moaels aerial trianmation io the instabi
Gity of Lie rojection centers (Frs) Glonm the okservations.

Sen winr analocicsl olotters, tris instability is particu larly felt in the nlanimetric $X_{o} Y_{0}$ cooruinetes, wile the ${\underset{\sim}{0}}^{\circ}$ ooordnate seems to be less influenced by the variations in the camera's attitude. Ir some experiments wnicio we oresent in ano_ Fher nsper $[1]$, e chow that in a Jontoni Zimplex II r blotter tie varistions in $\%_{0} Y_{0}$ are almost; to 10 times kiser than in Z_{0}, derendin on the mamitude or the of w x variotiors imno sed to the camera.

This situstion is implicitely aknowledred in some indenerd ent mode?s procedures, where the plerimetrio connexion of the Tos is wiven a wei ht much smal Ier than be altinetric one
e believe that the results of tio above said experiments may be extended to many other analorical pioters, excepted those - Jike the ern pre - where the pes coominaten are meesured in each mode? (and here olso the meacore of $Y_{0} Y_{0}$ is less acou_ rate than of $厶_{0}$).

A completely different speech is to be done for analytical plotters, where the PS' coordinates are computed in each model by space resection. But if we analyze the causes of unaccuracy in their computation - like too big variations in the $b_{y} b_{z}$ components and in the $\int \omega x$ attitude ir had flights - me still find that most of their effects are worse on the $X_{o} Y_{0}$ co_ ordinates thar on the \mathbb{Z}_{0} one.

As a cereral conclusion, we may sey that the manimetrie coordinates of the PCs are fenerally worse than the altimetric
ones.
2. - From these considerations naturally comes out the question, if we can avoid the use of the planimetric $X_{o} Y_{0}$ coordinates for the bridgine of independent models, and limit the PCs' connexion to the Z_{0} coordinate.

In fact, if no connexion of the H is is considered, one only degree of freedom - apnroximately a f rotation - remains undefined; therefore one only equation is sufficient to comple te the full orientation of the second model on the first one. Now, there is no doubt that the connexion on the three $X_{o} Y_{0}{ }_{0}$ coordinates is much stronger than in Z_{0} onlv; this is mainly due to the fact that the X_{o} connexion cjves a 1 st order tie, while the Y_{o} and Z_{0} ones rive a 2 nd order tie.

However, if there are no contrary causes, also a 2nd order constraint is enough to correct an imperfect attitude; it is something like the equilibrium of a bicycle, which is kept by the very weak couple given by the wheels' rotation. Now, in our problem not only there are no contrary stresses, but there are very frequent favourable conditions - given by transversal tie points, ground controls, zenithal ankles, etc. - which help the Z_{0} connexion to fix the correct φ attitude, despite its weakress.

We presume therefore that a block computation by independent models can be done introducing only the heights of the PCs, and that the general accuracy of the aerial triangulation may have some advantage from this approach, or at least a negligible loss. This should be particularly true in analogical aerial triangulation, where the instability of the PCs' planimetric coordinates is really dangerous; and is certainly true in block triangulation with uniformly distributed controls.
3. - It would be extremely complex to give an analyti cal full demonstration of what above, and maybe it isn't worth while. We have preferred to set up an experiment, which should at least empirically show that it is possible to use only height connexions on the PCs in blocks with uniformly distributed con_ trol points, without significant loss of accuracy in the final results.

The experiment is set up as follows:
i) - observation of a little block of strips with the inde_ pendent models technique. The block (see Annex 1) is derived from a larger one employed for the 1:5,000 technical map of the Regione Toscana (flights 1977, Zeiss RviK 23 A camera, 6" focal length, relative height 2200 m , photo scale $\sim 1: 13,000 ; 4$ short strips, each one of 4-5 models, for a total amount of 17 models; 24 control point almost uniformly distributed on the whole sur_ face of the block; observations done at an OnI AP/C, one pass, with "independent models" program; 6 pass-points, and 2-4 trans_ versal tie-points in each model);
ii) - adjustment and computation of the whole block perfor_ med with 5 different procedures:
A. - Ackermann procedure [2] ;
B. - King procedure [3] ;
C. - Schut procedure [4] ;
D. - TABLO procedure (rigid bridged models) [5] ;
E. - TAMI 1 procedure (rigid independent models with connexion of the PCs alternatively in height and planimetry in 6 successive iterations);
F. - TAMI 2 procedure (rigid independent models with connexion of the PCs only in height in 6 successive iterations);
iii) - comparison of the coordinates of each computed point obtained with the above 6 procedures. The differences are repor_ ted on synoptic tables, separately for ground points (full con
trols, single heights), and for the pass- and tie-points (see Annex 2; due to space shortage, only a sample table is reported here). Their mean absolute values are reported in the following table:

iv) - a synthetic comparison of the results obtained in the heights definition - the most important ones - is reported in Annex 3, where the differences with the ground and with the Ackermann heights in the above procedures are described by con_ tours. Due to space shortage, here also only two contour maps - the TAFI 2 vs. ground heights, and the TAFI 2 vs. Ackermann heights - are reported (the remaining ones may be issued on request).
4. - From the above results the following conclusi_ ons may be drawn:
a) - the differences obtained by independent models with con_ nexion of the PCs only in height, and the remaining procedures as specified in 3, ii), are unsignificant for practical carto_ graphic purposes;
b) - similarly unsignificant are the differences in the co_ ordinates obtained from each one of the six methods specified in 3, ii). We may say that for cartographic purposes anyone of these methods - and any good modern method - is equally good.

Acknowledgements

The observations of the whole block at the AP/C, the computations with the D, \mathbb{E}, F procedures, and all the ta_ bles and drawings were prepared by Mr. G. Giorgetti, for his graduation thesis as Engineer at the University of Ancona. We express him our gratitude.

We thank also Prof. IT. Cunietti, Geom. I. Iuchini and Geom. G.I. Pelacani, who kindly performed the block computation with the A, B, C procedures.

References

[1] - BIRARDI, G. - Computing and checking the projection centers in analogical plotters - Presented paper, XIV Congress of the ISP, Commission III, Hamburg, 1980.
[2] - ACKERNANN, F. et A. - Block triangulation with independent models - Photogrammetric Engineering, 1973, pag. 967 sgg.
[3] - KING, C.V.B. - Programming considerations for adjustment of aerial triangulation - Photogrammetria, 23, 1968.
[4] - SCHUT, C.H. - A Fortran program for the adjustment of strips and blocks by polynomial transformation - N.R.C. of Cana_ da, AP-PR 33, 1966.
[5] - BIRARDI, G. - Calculation of a block of strips based on uniformly distributed control points - Presented paper, X Congress of the ISP, Lisboa, 1964.
5is

Mriex :

Dinion

A	1005.44	P142.58	312.98		Δ_{x}	A	${ }^{\text {a }}$
B	1005.15	8142.70	312.69	E-7	0.29	-0.12	0.29
c	1005.11	8142.63	312.93	Act	0.33	-0.05	0.05
D	1005.41	8142.82	312.81	A	0.03	-0.24	0.17
E	1005.27	8142.19	313,40	A-E	0.17	0.39	-0,42
F	1005.30	8142.54	312.74	A-5	0.14	0.04	0.24
0	1005.24	8142.95	312.58	A-G	0,20	-0.37	0.4

punta liymaro:

A	978.20	8168.62	312		Δ_{x}	Δ_{Y}	A
B	977.86	81	312.95	A-B	0.34	0.37	-0.35
C	97.7. 8	81	3.13.10	Ac	0.38		-0.5
D		P168.	$3 / 3.01$	促	0.10	0.30	
E	977.98	167.	312.88	A-E	0.22	0.71	-0.
F	977.97	8168.1	312	退	0.23	0,52	-0.
G	977.92	8168.54	312.85	Sec	0.28	0.11	0.2

